Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Environ Toxicol Chem ; 40(12): 3434-3440, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34606656

RESUMO

Pressures from anthropogenic activities are causing degradation of estuarine and coastal ecosystems around the world. Trace metals are key pollutants that are released and can partition in a range of environmental compartments, to be ultimately accumulated in exposed biota. The level of pressure varies with locations and the range and intensity of anthropogenic activities. The present study measured residues of trace metals in Mytilus mussel species collected from a range of locations around the world in areas experiencing a gradient of anthropogenic pressures that we classified as low, moderate, or high impact. The data showed no grouping/impact level when sampling sites in all countries were incorporated in the analysis, but there was significant clustering/impact level for most countries. Overall, high-impact areas were characterized by elevated concentrations of zinc, lead, nickel, and arsenic, whereas copper and silver were detected at higher concentrations in medium-impact areas. Finally, whereas most metals were found at lower concentrations in areas classified as low impact, cadmium was typically elevated in these areas. The present study provides a unique snapshot of worldwide levels of coastal metal contamination through the use of Mytilus species, a well-established marine biomonitoring tool. Environ Toxicol Chem 2021;40:3434-3440. © 2021 SETAC.


Assuntos
Metais Pesados , Mytilus , Oligoelementos , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Metais Pesados/análise , Mytilus/metabolismo , Oligoelementos/análise , Poluentes Químicos da Água/análise
3.
Mar Pollut Bull ; 173(Pt A): 113033, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34653884

RESUMO

Documenting the prevalence of microplastics in marine-coastal ecosystems serves as a first step towards understanding their impacts and risks presented to higher trophic levels. Estuaries exist at the interface between freshwater and marine systems, and provide habitats for a diverse suite of species, including shellfish, fish, and birds. We provide baseline values for estuarine mudflats using sediment samples collected at Cowichan-Koksilah Estuary in British Columbia, Canada, a biologically-rich estuary. The estuary also contains a marine shipping terminal, forestry log sort area, and input of contaminants from nearby residential and agricultural areas. Microplastics, both fragments and fibers, occurred in 93% (13/14) of sediment samples. A mean of 6.8 microfibers/kg dw (range: 0-12 microfibers/kg dw) and 7.9 microfragments/kg (range: 0-19 fragments/kg dw) occurred in individual samples, and counts of fibers and fragments were strongly correlated (r = 0.78, p = 0.008, n = 14). The abundance of microplastics tended to be higher on the north side of the estuary that receives greater inputs from upland sources relative to the south side. Size distributions of microplastic fragments and fibers were similar to sediment grain size distribution with size categories 0.063 to 0.25 mm and 0.25 to 0.6 mm being the most common for plastics and sediment, indicating the occurrence of microplastics likely followed existing depositional processes within the estuary. Microplastics in sediments were composed of a variety of polymers, including high density polyethylene (HDPE), Nylon 6/6 (polyhexamethylene adipamide), and polyethylene terephthalate-PETE (poly(1,4-cyclohexylene dimethylene terephthalate)). This study indicates that microplastics occur throughout most of the Cowichan-Koksilah Estuary, and future studies should focus on the exposure risk and potential for bioaccumulation for wildlife species that feed on the surface of intertidal mudflats.


Assuntos
Microplásticos , Poluentes Químicos da Água , Animais , Colúmbia Britânica , Ecossistema , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Plásticos , Poluentes Químicos da Água/análise
4.
Biometrics ; 67(3): 1142-52, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21175556

RESUMO

Oysters from the Pacific Northwest coast of British Columbia, Canada, contain high levels of cadmium, in some cases exceeding some international food safety guidelines. A primary goal of this article is the investigation of the spatial and temporal variation in cadmium concentrations for oysters sampled from coastal British Columbia. Such information is important so that recommendations can be made as to where and when oysters can be cultured such that accumulation of cadmium within these oysters is minimized. Some modern statistical methods are applied to achieve this goal, including monotone spline smoothing, functional principal component analysis, and semi-parametric additive modeling. Oyster growth rates are estimated as the first derivatives of the monotone smoothing growth curves. Some important patterns in cadmium accumulation by oysters are observed. For example, most inland regions tend to have a higher level of cadmium concentration than most coastal regions, so more caution needs to be taken for shellfish aquaculture practices occurring in the inland regions. The semi-parametric additive modeling shows that oyster cadmium concentration decreases with oyster length, and oysters sampled at 7 m have higher average cadmium concentration than those sampled at 1 m.


Assuntos
Cádmio/análise , Modelos Estatísticos , Ostreidae/crescimento & desenvolvimento , Animais , Aquicultura/normas , Biometria/métodos , Canadá , Poluição Ambiental/análise , Contaminação de Alimentos/análise , Inocuidade dos Alimentos , Noroeste dos Estados Unidos , Ostreidae/química
5.
Mar Pollut Bull ; 58(8): 1137-1143, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19406438

RESUMO

Oysters from the north-west coast of Canada contain high levels of cadmium, a toxic metal, in amounts that exceed food safety guidelines for international markets. A first required step to determine the sources of cadmium is to identify possible spatial and temporal trends in the accumulation of cadmium by the oyster. To meet this objective, rather than sample wild and cultured oysters of unknown age and origin, an oyster "grow-out" experiment was initiated. Cultured oyster seed was suspended in the water column up to a depth of 7 m and the oyster seed allowed to mature a period of 3 years until market size. Oysters were sampled bimonthly and at time of sampling, temperature, chlorophyll-a, turbidity and salinity were measured. Oyster total shell length, dry tissue weights, cadmium concentrations (microg g(-1)) and burdens (microg of cadmium oyster(-1)) were determined. Oyster cadmium concentrations and burdens were then interpreted with respect to the spatial and temporal sampling design as well as to the measured physio-chemical and biotic variables. When expressed as a concentration, there was a marked seasonality with concentrations being greater in winter as compared in summer; however no spatial trend was evident. When expressed as a burden which corrects for differences in tissue mass, there was no seasonality, however cadmium oyster burdens increased from south to north. Comparison of cadmium accumulation rates oyster(-1) among sites indicated three locations, Webster Island, on the west side of Vancouver Island, and two within Desolation Sound, Teakerne Arm and Redonda Bay, where point sources of cadmium which are not present at all other sampling locations may be contributing to overall oyster cadmium burdens. Of the four physio-chemical factors measured only temperature and turbidity weakly correlated with tissue cadmium concentrations (r(2)=-0.13; p<0.05). By expressing oyster cadmium both as concentration and burden, regional and temporal patterns were demonstrated, which may have been missed if just concentration was determined.


Assuntos
Cádmio/análise , Crassostrea/química , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Animais , Cádmio/metabolismo , Clorofila/análise , Clorofila A , Noroeste dos Estados Unidos , Oceano Pacífico , Salinidade , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...